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Absttact. The spectra of the non-Markovity parmeter for three model systems are found: an 
ideal gas. w d l y  non-ideal gas and a medium in hydrodynamic limits It is shown that the 
"owMarkovian effects play the dominant role in all three above-mentioned cases The effects 
of molecular memory are connected with the statistical appearance of intermolecular interactions 
in statistical systems. 

1. Introduction 

The theory of Markovian random processes that began with the well known article of Markov 
[ 11 served for a certain time as the fundamental basis for describing a wide range of statistical 
phenomena in physics and chemistry (e.g. [Z, 31). After the prominent articles of Zwanzig 
[4] and Mori [5 ] ,  in principle it is quite clear that in statistical physics, non-Markovian 
processes and the statistical effects of molecular memory play a great role. However, the 
methods of strict quantitative evaluation of the effects of memory have not been elaborated 
for a long time. The quantitative criterion of numerical evaluation of the non-Markovian 
effects was firstly introduced only in [6,7]. Recently, the notion of a spectrum of the 
non-Markovian parameter and Markovization depth was determined for the description of 
non-equilibrium processes in liquids. 

In its usual meaning, a spectrum of physical quantities is a set of eigenvalues of 
corresponding operators. Yet the spectrum concept has another and wider meaning. Because 
the term 'spectrum' stems from the Latin word for 'representation' or 'image', in physics, 
therefore, 'spectrum' means an aggregate of all values of a physical quantity indicative of 
a system or a process. 

Investigation of a spectrum of physical quantities is one of the most vital tasks of the 
physics of condensed media. The most traditional is a determination of an energy spectrum, 
a system of eigenfunctions, spectral invariants, spectral properties of a corresponding group 
of unitary shift operators, etc. We analyse in the present paper the spectral properties such 
as random density fluctuations that lead to structural relaxation. 

The concept of a non-Markov spectrum reflects the infinite structure and hierarchy 
properties of an arbitrary relaxation process. The hierarchy of the equations is due to 
intermolecular interactions and to the static properties of the system. The presence of a 
definite ith level reflects only the existence of an ith equation of the chain. From the 
physical standpoint, we are interested in the Markov ( E  >> 1) and non-Markov (6 - 1 or 
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E < 1)  regions of a spectrum. The number m of the level at which the change from a 
Markov to a non-Markov spectrum takes place can be called the depth of 'Markovization' 
dM = m [6,7]. 

It is noteworthy that for quasi-Markov ( E  >> I )  and purely Markov ( E  -+ 03) processes 
the initial time correlation function (TCF) cannot be determined from the first equation of the 
chain. The point being made is that the presence of non-Markov behaviour at deep levels 
plays an essential role in the behaviour of the experimentally observed physical quantities 
in the case of quasi-Markov and Markov processes at the first level. By way of example 
we refer to spin relaxation in liquids [%I I]. where the spin relaxation itself is a Markov 
process. However, the presence of non-Markov behaviour in molecular processes (cl - 1 
at the first level) leads to an unusual square root dependence of the spin relaxation time in 
liquefied inert gases, liquid metals, and semiconductors (TI, E - TI/'. T-'/*). The picture 
observed changes substantially when Markov molecular processes become responsible for 
the spin relaxation (cl  + CO). The temperature dependence of TI and T2 become of the 
traditional activation type. 

The space dispersion of the non-Markovity parameter for structural relaxation was found 
in [7]. The spectrum of this parameter for vibrational, structural and dielectrical relaxation 
was obtained in 112,131 and in [14] the spectra and their space dispersions for transport 
phenomena (viscosity, heat conduction) i n  liquids were calculated. The resuits which were 
obtained in [6,7,12-141 showed the fundamental role of non-Markovian effects in processes 
of relaxation in condensed matter. 

The goal of this particular article is to calculate the spectrum of the non-Markovity 
parameter for three simple model systems: an ideal gas, a weakly non-ideal gas and a 
hydrodynamical system (in limits k 0, where k is a wavevector), when the calculations 
may be carried out exactly, without using approximations. Analysis of these three models 
is important for two reasons: firstly,~ for the best comprehension and explanation of the non- 
Markovian effects from the experimental spectrum, and, secondly, for the clarification of the 
fundamental role of interparticle potential interaction in random intermolecular processes. 

The organization of this paper is as follows. In section 2 we deduce the infinite 
hierarchy of connected equations for the time correlation functions. In section 3 we give 
determinations of the spectrum of the non-Markovity parameter and depth of Markovization 
and calculate them for an ideal gas (subsection 3.1), weakly non-ideal gas (subsection 3.2) 
and for systems in the hydrodynamic limit (subsection 3.3). We will conclude in section 4 
with some remarks. 
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2. General framework 

Let us consider the time evolution of the equilibrium fluctuation 6Ao(t) = A&) - (A&)) 
of the dynamical variable A&), which is the Fourier transformation over particle density 
(15), where the brackets (. . .) denote the statistical average over the equilibrium distribution 
of Gibbs. The fluctuation obeys the Liouville equation 

d 
-(GAo(t)) = iiSAo(f) (1) dt 

where we invoduce the Liouviile operator i 
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and operator il corresponds to the particle interactions, U(r1j) is a pair potential, p, is the 
momentum of j t h  particles. m is the ma? and N is the total number of particles. 

Successively applying the operator L to the dynamic variable SAo(0) we obtain the 
infinite set of dynamic functions 

E.(o) = ( ~ ) " S A ~ ( O )  n > 0. (3) 

Applying the Gram-Schmidt orthogonalization procedure 1151 to the set of functions E,(O), 
we obtain the set of dynamical variables W,,: 

( W m ,  W O ) )  = (IW"lZ)&J 

where &,I is Kronecker's symbol. 

with the preceding values of smaller number: 
We may easily infer the recurrent formulae in which the next values W,(t) are connected 

- (0) WO = sAo(0) Wl = ( L  - w0 )WO 
(4) 

W" = (i - w y ) ) w n - l  - Wn-z n z 1. 

Here we introduce the following notation: 

where a, are the main relaxation frequencies, and the frequencies 3' describe the 
eigenspectrum of the Liouville operator i. 

Arbitrary variables W, may be expressed directly through the zeroth variable WO, using 
equations (4): 

w, = 

The set of orthogonal functions (4) can be connected with the set of projectors, which 
project the arbitrary dynamic variable Y to the corresponding vector of set 

P,' = P, n,p, = p,n. = 0. 

Take into consideration that both sets (4) and (7) are infinite. If we execute the operations 
in the space of dynamic variables then the formal expression (7) must be understood as the 
following: 
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Applying successfully operators no and Pa to equation ( I )  on the left and solving these 
systems of equations we obtain the infinite hierarchy of connected equations 

for the TCFS 

Functions M , ( t )  are usually considered [d7,12,13] as functions characterizing the 
statistical memory of the system. Here we determine the following notation for the diagonal 
matrix elements of Liouvillian 

The TCFS (IO) do not contain the Liouville operator, only the diagonal part ig) (11). In 
[4,5] the TCFS (10) contain the operator 

it) = P,-, Pn-2. .  . Poi 

instead of the operator f$' (equation (11)). It can be shown that the TCFs (IO) agree with 
one obtained in [4,5]. Indeed, expanding the TcFs (IO) in a Taylor series we derive the 
following expression: 

This expression can be put in a form coinciding with the results of [4,5], using the properties 
(8) and (9): 

Applying the Fourier transformations to equations (9) 

M.(s) = dre-"M, 1- - 
and we may reduce this infinite integrodifferential hierarchy (9) to the infinite system of 
algebraic equations 

- - 
M,,(s) = {s - iot' + S~:+~M.+~(S)J- ' .  (12) 

Solution of this system for MO has its persistent fraction form. 
Although the resulting system of kinetic equations (9) coincides with that given by 

Mori and Zwanzig [4,5], the method developed in this article differs from theirs in two 
ways. Firstly, we have used the infinite set of orthogonal dynamical variables W. and the 
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orthogonal set of projectors (7) and (8). We have obtained the set of functions W,, in an 
explicit form with the help of the GramSchmidt orthogonal procedure. Secondly, in the 
inference system (9), the matrix representation of the Liouville operator and its splitting in 
various subspaces has been used. 

It was this approach which was used in the functional analysis an; quantum theory 
of scattering [21,22]. Because of this, the diagonal matrix elements L g )  (n 2 0) have 
been produced in the evolution operator inside the TCFs (IO). For TCFs, the initial space of 
dynamical variables is the Hilbert space, which is why there is no difference when using 
the operator ig) and ip' [23]. 

However, in the series of other important problems, for example in the quantum theory 
of scattering [22,24,25] and in equilibrium statistical physics [22,26,27], the initial space 
of variables is the Banach space. Therefore the difference between the operators ig) and 
i f )  is essential when we calculate the evolution of states in  various functional subspaces. 

3. Spectra of parameter non-Markovity for the statistical systems 

Previously, the hierarchy of equations (9) has been investigated repeatedly for various 
systems and dynamical variables WO [4-7,12-14]. In particular, we showed that in many 
cases the basic role is played by the effects of non-Markovity, which describe hierarchy (9). 
In order to describe the non-Markovity of a system quantitatively we suggested calculation 
of the non-Markovity parameter [6,7] and its spectrum [ U ,  131. Briefly, the main point of 
these artjc~es is the fo~owing. 

We determine the time of relaxation r, of the TCFs M,(?) by the following correlation: 
m 

r,, = R e i  d s M n ( r ) = R e G n ( 0 ) .  (13) 

E ,  = r"/rn+, n 0 . (14) 

The spectrum of the non-Markovity parameter describes the infinite set of dimensionless 
parameters 

The integer n corresponds to the number of the equation (level) in systems (9). If the quantity 
of the parameter E ,  >> 1 for some integer n ,  then this level of relaxation is Markovian. In 
the opposite case, when we have E ,  ranging from zero to values of the order of unity, 
the relaxation is non-Markovian. For the number m of the first level with non-Markovian 
relaxations, the term depth of Markovization, d~ = m, was suggested [12,13]. Some 
examples for simple liquids were investigated in [12,13], from which it is shown that the 
relaxation of systems steadily approaches the non-Markovity regime, while the level number 
n increases. Here we investigate the simple situation when it is possible to calculate the 
spectrum of the non-Markovity parameter theoretically. The initial variable is the Fourier 
transformation over the fluctuation of the particle number density of a system 

It is obvious that all frequencies 0; are equal to zero for the variable (15). In all three 
cases calculated in the present article the correlation time to is real and the spectrum of the 
non-Markovity parameter obeys the following equation: 

"'"ti 
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This relation allows us to express E .  in terms of the variables ro and Q k :  

R M Yulmefyev and N R  Khusnutdinov 

Hereafter we use the following notations: c,, cpr n, x .  K, e which are the specific heat 
capacities in units of mass at constant volume and constant pressure, n = N / V  is the 
density o f  number particles, the coefficient of isothermal compressibility and energy by one 
particle, respectively. The quantity lPs = ( ( ~ ~ / c ~ ) ( ~ p / 3 p ) ~ ) ' / ~  is the velocity of sound in 
the matter, rr = ( 4 ~ 1 3  + F + (l/cv - 1 /c&)/2p is the absorption coefficient o f  sound and 
T is the temperature in units of energy. 

3. I .  Ideal gas (U = 0) 

The initial TCF is calculated exactly in this case and has  the following form: 

MO@) = exp(-t2/t:] rf = 2 m / k Z T .  (16) 

The calculation will be up to the leve1 n = 4. The main relaxation frequencies have the 
simple form 

= nS-2: = k Z T / m  k # 0 . (17) 

Using equation (16) we can obtain the next TCF M a @ ) ,  and then the first four numbers in 
the spectrum of the non-Markovity parameter have the following form: 

€0 = n/Z w 1.51 c l  = 4/n * 1.21 

€2 = 3Z/8 w 1.17 €3 = 321971 * 1.13. 

This spectrum is represented in figure 1, from which it is shown that the non-Markovity 
parameter steadily approaches unity while n increases. 

We conclude with the following result: the relaxation of density in an ideal gas occurs 
in a non-Markovian regime with zeroth depth of Markovization & = 0. It seems to us 
that this is what one would expect. Actually, in this case statistics is introduced via the 
assumption that the equilibrium distribution is canonical at temperature T. After fixing the 
initial condition of a particle, which can be thought of as a system of a Gibbs ensemble, the 
motion of the particle turns out to be characterized by constant velocity (with only a sign 
inversion due to the collisions with the walls). In this case relaxation only stems from the 
average over the canonical distribution of initial conditions. 

3.2. Weakly non-ideal gas 

We will perform the calculation up to the linear approximation on particle interaction. Then, 
the approximate formula 

exp[it(i, + i , ) ]  w exp[itio] + dt, exp[i(t - t,&]ii, exp[itlio] (18) 

can be used to take into account the dynamic effect of the weakness of the interaction, 
where il is the interaction Liouvillian. 

l 



Statistical spectrum of the non-Markovity parameter 5369 

In1  l b l  

Figure 1. (a )  Specmm of the non-Markovity parameter for an ideal gas. Relaxation of density 
occurs in the non-Markovian regime with zeroth depth of Markovization dM = 0. The non- 
Markovity panmeter steadily approaches unity while n incrwes.  (b)  Spectrum of the non- 
Mxkovity parmeter for continuous miltter in hydrodynamic limits. The great oscillation of 
spectrum is the main peculiarity in this wse. Neighbouring levels have a different behaviour: 
if the nth level is 'Markovian', then the neighbouring ( n  t 1)th level is without fail 'non- 
Markovian'. 

The initial TCF has the following form: 

where 

J(k) = drg(r)lr(r)exp(ikr) s 
and g(r)  is a radial distribution function of particles in a liquid. 

the first point only, 
The spectrum of the non-Markovity parameter is different from the preceding case at 

w,hile at other points we have 

%>o = €"(id). 

The direction of alternation 6 ,  depends on the sign of the value Jo, and may be given a 
thermodynamical mean in the limit k + 0 121, 

Notice that the hierarchy of the equilibrium distribution function in liquids [2] was used to 
obtain expressions (19) and (20). 
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3.3. Hydrodynamic limits (k -+ 0)  
In this case the time fluctuation of the number particle density of a liquid obeys the well 
known Landau-Placzek formula: 

R M Yulmeryev and N R Khusnutdinov 

C" Mo(t)  = -COS($&) exp(-r,k2r) + 
CP 

To gain a better understanding of the spectrum of the non-Markovity parameter we 
examine the calculations in detail. The time correlations ro contain various degrees of the 
wavevector: 

The spectrum of the non-Markovity parameter is expressible in terms of the variables 
(linWo12) and the first four variables have the following form: 

Furthermore, we may calcutate the first three frequencies o, and 0, (equation (5)): 

A 
F 

- Fk2 + O(k6) w2 - OJ: = - + O(k2)  
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Then, we obtain the first three points in the spectrum of the non-Markovity parameter: 

From equation (27) we extract various dependences of the spectrum level for the wavevector 
k: 

€0 x k-’ € 1  x kZ €2 cx etc. 

In figure 1 the first three points for the non-Markovity parameter of continuous matter 
in hydrodynamical limits (k --f 0) are represented schematically. The great oscillation of 
spectrum E ,  is the main peculiarity in this case. Neighbouring levels have a different 
behaviour: if the nth level is ‘Markovian’, then the neighbouring (n t 1)th level is 
without fail ‘non-Markovian’. And vice versa, the next (n + 2)th level is also ‘Markovian’ 
considering irreversible processes. These oscillations deviate from the framework of our 
usual notions about Markovian relaxation processes in a continuous medium. Notice that 
the next degree over the wavevector k is outside the bound of the Landau-Placzek formula 
(22). 

The resulting black and white picture of the spectrum of the non-Markovity parameter 
reflects the hierarchy of relaxation times which are peculiar to hydrodynamic systems. 
The relaxation of the number particle density fluctuation is accounted for firstly by 
sound propagation and secondly by heat transfer (first and second terms in equation (22). 
respectively ). By this means, the time relaxation of the TCF of the number particle density 
fluctuation has the magnitude ro - IlkZ (at the expense of heat transfer). The equation for 
the TCF of the density fluctuation contains the TCF of the longitudinal flux of the number 
particle fluctuation MI. The time relaxation r, of this TCF M I  is constant while k + 0 [Z]. 
In such a manner we have €0 = rO/q - l/k2. 

The TCF of the fluctuation of the longitudinal flux of the number particle obeys 
the equation which contains the TCF of the energy of longitudinal movements. Since 
W2 = -p  - (equation (4)) (where Sp = WO is the number particle density fluctuation), 
the relaxation time r2 has a magnitude - l / k z .  Consequently, we obtain 61 = q/rz  - kZ. 

The TCF of the longitudinal movements of the energy fluctuation obeys the equation 
which contains the TCF of fluctuation of the flux of the energy of the longitudinal movement 
M3 whose time relaxation r3 is proportional to I C z .  Then 62 = rz/r3 - Ilk4. By this means 
the spectrum of the non-Markovity parameter within the hydrodynamic limits k 4 0 forms 
large oscillations owing to the great difference between relaxation times at neighbouring 
1 eve Is. 

4. Remarks and conclusion 

In the present article we found the spectrum of the non-Markovity parameter for 
simple model systems, namely an ideal gas, a weakly non-ideal gas and a medium in 
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hydrodynamical limits (k + 0). In all three described cases our calculations show the stable 
non-Markovian effects which testify to the strong effects of molecular memory. In the first 
two cases (ideal and weakly non-ideal gases) the depth of Markovization d~ = 0, and the 
relaxation is already non-Markovian for the zeroth level. It also remains non-Markovian 
at the following levels, and what takes place is the smoothing of relaxation times while n 
increases. This statement confirms Bogolubov's idea about a hierarchy of relaxation times 
in statistical systems [16]. In hydrodynamical limits k --t 0 the relaxation acquires the black 
and white picture: in the limits (k  + 0) the level with Markovian relaxation successfully 
alternates with a level where the relaxation is non-Markovian. This alternation connects 
with specific manifestation statistical effects of memory for hydrodynamical systems. 

In real physical 
processes, the experimentally observed relaxation kinetics is relatively complicated. Current 
spectroscopic techniques (for example, femtosecond technique and slow neutron scattering) 
allow investigations to be made of the fast processes which take place in the microscopy 
region of space. 

Our calculations have shown that in the absence of interaction (ideal gas) the 
whole spectrum is non-Markovian. The spectrum of the non-Markovity parameter 
undergoes essential transformations when the interaction has evolved. It acquires, as with 
hydrodynamics limits (section 3.3), the black and white form, or, more precisely, it takes 
the form of dumped oscillations. The surprising thing is that a similar picture is distinctive 
not only for hydrodynamics but for several relaxation processes as well which are studied 
by different spectroscopic methods. Here. we are referring to dielectric and NMR, NQR and 
EPR relaxations in liquids. For example, observations of dielectric relaxations in CH,I 1171 
lead to dumping oscillations in the spectrum of the non-Markovity parameter (see figure 2 
in [SI). In EPR relaxation, the observations of Vishnevskaya and collaborators [18-201 have 
shown [9] that over a wide range of varying viscosity (two orders) the picture of the non- 
Markovity parameter grossly changed. Whereas €0 ranges from infinity to zero, €1 ranges 
from lo0 to unity. 

In NQR relaxation in liquid metals, semiconductors and liquefied inert gases [lo,  1 I ]  we 
have €0 - IOt0  and € 1  - 1. This clearly demonstrates that the picture of relaxation for the 
two neighbouring levels is interrelated. Note the presence of non-Markovian behaviour in 
molecular processes at the first level (€1 - I )  leads to an unusual square root dependence 
of the spin relaxation time in liquefied inert gases, liquid metals, and semiconductors (TI, 
fi - T-'/*), while the zeroth level is Markovian (the spin relaxation itself is a Markov 
process). 

From the aforementioned, it is seen that the presence of spectra for comparison offers 
a clearer view of the correlation between the subtle details of intermolecular potential 
interactions and the spectrum of the non-Markovity of a system. 

In particular, the production of interaction leads to a just tis Markovian picture, so non- 
Markovian picture of relaxation at different levels of the spectrum (see figure 1). Detail in 
this picture essentially depends on a form of interaction-its shielding, and contributions 
from electrostatics, magnetic and quadruple forces, etc. Calculation and measurements of 
a spectrum of non-Markovity parameter for different interactions permits notable extension 
of our existing notions concerning the irreversible properties of media. 

R M Yulmefyev and N R Khitsnutdinov 

Calculations were performed to obtain spectra for comparison. 
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